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Abstract. A relation between the total instanton number and the quantum numbers of magnetic
monopoles that arise in general Abelian gauges in SU(2) Yang–Mills theory is established. The
instanton number is expressed as the sum of the ‘twists’ of all monopoles, where the twist is related
to a generalized Hopf invariant. The origin of a stronger relation between instantons and monopoles
in the Polyakov gauge is discussed.

1. Introduction

Instantons and (Abelian projection) monopoles are both topological objects that are associated
with low-energy phenomena in QCD. While instantons provide a solution to theU(1) problem
[1, 2] and an explanation for chiral symmetry breaking [3], they have not yet been able to explain
colour confinement [4, 5]. A possible mechanism for the latter is the dual Meissner effect due
to condensation of magnetic monopoles that arise in so-called Abelian gauges [6, 7]. Lattice
simulations indicate that magnetic monopoles do indeed play an important role in confinement
[8–11]. Since lattice simulations also indicate that the transition to a deconfined phase and
the restoration of chiral symmetry occur at approximately the same temperature, it would be
puzzling if they were generated by completely independent mechanisms. There is indeed
evidence from a number of studies both in the continuum and on the lattice that instantons and
monopoles are correlated in several Abelian gauges (see, e.g., [12–17]). A connection between
the instanton number (Pontryagin index) and magnetic charges has already been considered in
[18, 19]. The detailed relation between the total instanton number and the quantum numbers
of magnetic monopoles has so far only been established in the Polyakov gauge (or the related
modified axial gauge) [20–22].

In the standard model, Taubes has shown how monopole fields can be used to generate
topological charge [23]. As pointed out by van Baal in [24], similar arguments may be made
in the context of an Abelian projection in pure Yang–Mills theory. This has been demonstrated
explicitly for a new finite-temperature instanton (caloron) solution by Kraan and van Baal in
[25]. There, it has been shown that the instanton number is carried by a magnetic monopole
that makes a full rotation in colour space along its (closed) worldline. It has been noted that
the relevant topology for this ‘twist’ of the monopole is the Hopf fibration. These observations
are worked out in greater detail for general configurations in this paper.

Section 2 presents a short review of the definition of general Abelian gauges in terms of
an auxiliary Higgs field and of the characterization of the magnetic monopole singularities
arising in these gauges. In section 3, the general relation between the instanton number and
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the auxiliary Higgs field is established for the Euclidean ‘spacetime’ S4. Section 4 provides
a generalization of the Hopf invariant of maps from S3 to S2 to maps from S2 × S1 to S2.
This invariant is used in section 5 to derive the contribution of a single monopole loop to the
instanton number. The resulting relation between the instanton number and the generalized
Hopf invariants of monopoles is illustrated with the example of a single-instanton solution
that is known to lead to a monopole loop in the (differential) maximal Abelian gauge [13]. In
section 6, the contribution of topologically non-trivial monopole loops to the instanton number
on the spacetime S3 ×S1 is derived. Section 7 gives a qualitative explanation for the existence
of a stronger relation between instantons and monopoles in the Polyakov gauge. The final
section contains a discussion of the results.

2. Monopoles in general Abelian gauges

Throughout this work, we consider pure SU(2) Yang–Mills theory. The term ‘Abelian gauge’
will be used for gauges that are defined by the diagonalization of some fieldφ[A] that transforms
according to the adjoint representation of the gauge group,

φ(x) → �(x) φ(x)�+(x) (1)

under a gauge transformation �(x) ∈ SU(2). Due to this property, we will call φ an auxiliary
Higgs field. It is not a fundamental field of the theory but rather a functional of the gauge
potential A. The field φ can take values in either the gauge group (in our case SU(2)) or its
algebra (su(2)). Well known examples are the Polyakov gauge whereφ is the (time-dependent)
Polyakov line,

φ(x, t) = P exp

(∫ t+β

t

dt ′ A0(x, t
′)
)

∈ SU(2) (2)

(on a spacetime with finite temporal extent β), and the maximal Abelian gauge where
φ = φ · σ ∈ su(2) minimizes the functional

R[φ,A] =
∫

d4x tr
(
[∂µ + Aµ, φ]2

)
(3)

under the constraint |φ| = 1.
Monopole singularities arise where φ does not define a direction in colour space, i.e.

where φ = 0 for φ ∈ su(2) or φ = ±1 for φ ∈ SU(2). Since these conditions involve three
equations, the monopole singularities will generically occupy points in three-dimensional space
or one-dimensional submanifolds (worldlines) in four-dimensional spacetime. Around these
points, the direction of the auxiliary Higgs field defines a map from a two-dimensional sphere
S2 to another S2. (In spacetime, one has to consider 2-spheres that link with the monopole
worldline.) The winding number of this map provides the charge of the magnetic monopole
singularity that appears in the diagonal part of the gauge potential after gauge fixing. It can be
expressed as

m = deg[φ̂] = 1

8π

∫
S2
εijkφ̂i dφ̂j ∧ dφ̂k = −i

16π

∫
S2

tr φ̂ dφ̂ ∧ dφ̂ (4)

where the unit vector φ̂ in the direction of the Higgs field is defined via the relations

φ = φ · σ and φ̂ = φ

|φ| for φ ∈ su(2)

φ = cosβ + iφ̂ · σ sin β for φ ∈ SU(2)
(5)

and φ̂ = φ̂ · σ denotes the corresponding su(2) matrix.
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Using the fact that the gauge-fixing transformation � diagonalizes φ̂,

�φ̂�+ = σ3 (6)

m can be expressed in terms of �,

m = i

4π

∫
S2

tr σ3(d��+)2. (7)

Since the integrand is a total differential, (d��+)2 = d(d��+), � has to be discontinuous at
some point x1 on S2 if m �= 0. This is the origin of the Dirac string singularity in the Abelian
projected gauge potential. Since the Higgs field is continuous on S2, the discontinuity in �

has to be Abelian,

�(x) → e−iψ(x)σ3�0 for x → x1. (8)

The magnetic charge can be expressed as the winding number of the phase ψ along an
infinitesimal closed curve C around x1 on S2,

m = 1

2π

∫
C

dψ. (9)

Note that although the above discussion does not directly apply to the maximal Abelian
gauge since the constraint |φ| = 1 does not permit zeros of φ, discontinuities of φ̂ cannot, in
general, be avoided also in this gauge and monopole singularities arise after gauge fixing. In
this case, of course, the auxiliary Higgs field itself is discontinuous.

3. Instantons in general Abelian gauges

The above discussion shows that all information about the positions and charges of the
monopoles is present in the auxiliary Higgs field that defines the Abelian gauge in question.
One is prompted to ask whether information about the number of instantons is also included.
Since the latter relates to global properties of the gauge field it is useful to consider a specific
spacetime geometry. For simplicity, we choose S4. It can be covered by two charts. We will
use one large chart that covers all of S4 with the exception of one point and as a second chart
a small neighbourhood of that point. The excluded point can be chosen such that the direction
of the Higgs field is well defined on the small chart. In the overlap, the gauge fields on the two
charts are related by a gauge transformation with a transition function U ∈ SU(2),

A(1) = U+(A(2) + d)U. (10)

Since the Higgs field transforms according to the adjoint representation of the gauge group (it
belongs to an associated fibre bundle), the Higgs fields on the two charts are related by the
same gauge transformation,

φ(1) = U+φ(2)U. (11)

We use stereographic projection to parametrize the large chart by R
4. Equation (10) then

turns into the statement that A(1) approaches a pure gauge at infinity,

A(1)(x) ∼ U+(x̂) dU(x̂) for |x| → ∞. (12)

We drop the superscript (1) in the following because we no longer need the second chart.
The winding number (or degree) of U as a map from S3 to SU(2) ∼= S3 is the total instanton
number ν of A,

ν = deg[U ] ≡ 1

24π2

∫
S3

tr
[
(U+ dU)3

]
. (13)
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The Higgs field approaches the corresponding gauge transform of a constant (the value of the
Higgs field on the excluded point of S4),

φ(x) → φ∞(x̂) ≡ U+(x̂) φ0 U(x̂) for |x| → ∞. (14)

Due to our choice of charts, the direction of φ∞ is well defined. It provides a map from S3 to
S2. Such maps fall into different homotopy classes and can be characterized by the so-called
Hopf invariant (see, e.g., [26]). It is usually defined in an indirect way: let ω2 denote the
volume form on S2 (strictly speaking, the pull-back of it),

ω2 = 1
2εijkφ̂i dφ̂j ∧ dφ̂k = − 1

4 i tr φ̂ dφ̂ ∧ dφ̂. (15)

Since ω2 is closed and the second cohomology group of S3 is trivial, ω2 can be written as a
total derivative, ω2 = dυ, where υ is a 1-form. The Hopf invariant is defined as

α[φ̂∞] ≡ 1

16π2

∫
S3
υ ∧ dυ (16)

and is independent of the choice of υ. Geometrically, the Hopf invariant is given by the
linking number of the preimages of two arbitrary points on S2. The preimages are generically
one-dimensional curves and have an orientation induced from the neighbourhood of the two
points. The linking number is defined as the number of times one has to cross the two
preimages to disentangle them with orientations taken properly into account. It has the
algebraic representation

l = 1

4π

∫
x − x′

|x − x′|3 · (
dl × dl′

)
(17)

where the line integrals are performed over the two preimages. One can show that l is
independent of the choice of the two points on S2.

The representation (14) can be used to express ω2 in terms of U ,

ω2 = i tr[φ̂0(dU U+)2] (18)

which can be easily integrated,

ω2 = dυ with υ = i tr[φ̂0 dU U+]. (19)

Without loss of generality we may choose φ̂0 = σ3 yielding

υ ∧ dυ = − tr[σ3 dU U+] ∧ tr[σ3 dU U+ ∧ dU U+]

= −(dU U+)3 ∧ 1
2 iε3ij (dU U+)i ∧ (dU U+)j

= − 1
6 iεijk(dU U+)i ∧ (dU U+)j ∧ (dU U+)k

= − 2
3 tr

[
(dU U+)3

]
(20)

where the anticommutativity of the wedge product has been exploited. We find that the Hopf
invariant is given by the negative of the degree of U ,

α[φ̂∞] = − deg[U ] = −ν. (21)

The instanton number is therefore identical to the negative of the Hopf invariant of the auxiliary
Higgs field at infinity.

How does the latter relate to monopoles? The necessity of points where φ̂ is undefined
for non-vanishing instanton number follows immediately: a non-trivial φ̂∞: S3 → S2 cannot
be deformed into a constant continuously and is therefore not extendible to R

4. The question
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of whether these points are monopoles (i.e. have non-zero magnetic charge) and how their
charges relate to the instanton number requires a more detailed analysis.

Before this, we investigate how the instanton number decomposes into contributions from
the individual monopoles. Consider the generic case of an arbitrary number of closed monopole
loops in S4. Since loops cannot link in four dimensions, it is possible to enclose the individual
loops in disjoint 4-volumes Vi that are topologically trivial (have no holes). The Hopf invariant
has the nice property of being additive in the sense that α[φ̂∞] can be written as the sum of the
Hopf invariants of φ̂ on the boundaries of the volumes Vi ,

−ν = α[φ̂∞] =
∑
i

α
[
φ̂
∣∣
∂Vi

]
(22)

since φ̂ is continuous outside of the Vi . Furthermore, since (the adjoint of) the gauge-fixing
transformation � that diagonalizes φ is related to φ̂ in the same way as U to φ̂∞,

φ̂ = �+σ3 � (23)

the individual contributions are identical to the respective degrees of �,

α
[
φ̂
∣∣
∂Vi

] = −ν[�∣∣
∂Vi

]
. (24)

The right-hand side is non-zero only if � is singular in Vi , in which case the degree equals the
instanton number of the gauge singularities produced by � inside of Vi . We have reduced the
problem to the calculation of the Hopf invariant of a single monopole loop in a topologically
trivial volume V .

4. Generalized Hopf invariant

In the modified axial gauge, it is possible to express the instanton number in terms of monopole
charges that can be calculated from properties of the auxiliary Higgs field in the vicinity of
the monopole worldlines [22]. It would be desirable to establish a similar relation in the
general case. Accordingly, we embed each monopole loop into a loop of finite thickness
and try to assign a Hopf invariant to φ̂ on the surface T of the thick loop. This surface is a
higher-dimensional generalization of a tube and has the topology of S2 × S1. The coordinate
corresponding to the second factor can be interpreted as the proper time τ ∈ [0, 2π ] (in
Euclidean space) of the monopole, the first factor as a sphere surrounding the monopole at
fixed τ . In the quest for an invariant of φ̂|T , we seek a characterization of the homotopy
classes of maps φ̂: S2 × S1 → S2. These have been studied in [27]. Following the ideas
developed there, we give a more explicit discussion that is better suited for our purposes.
A first characterization is given by the magnetic charge that we introduced in the previous
section. It is the winding number of φ̂ in its first argument for fixed τ . By continuity, it has to
be independent of τ . However, on a compact manifold the total magnetic charge vanishes. It
is therefore not a good candidate for the instanton number.

The most obvious ansatz for a further invariant, a naive generalization of the Hopf invariant
(16), is only possible for m = 0: the magnetic charge is given by the integral of the pull-back
ω2 of the volume form on S2 for fixed τ . Form �= 0, it is therefore not possible to write ω2 as a
total differential. In this case, it is actually not possible to define an integer-valued invariant at
all, since it turns out that the homotopy classes of maps S2 × S1 → S2 with a given magnetic
charge m form the group Z2|m| rather than Z (as can be inferred from the results of [27]).

However, it is possible to generalize the Hopf invariant to a restricted class of functions
S2 ×S1 → S2 with magnetic chargem �= 0. It is this invariant that will enable us to establish a
relation between instantons and monopoles in section 5. We consider maps φ : S2 ×S1 → S2
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that map a fixed point on S2 to another fixed point φ0 on the target S2 for every value of the
second argument. For definiteness, we choose the first point to be the south pole. In polar
coordinates (ϑ, ϕ) on S2, the restriction therefore reads

φ̂(ϑ=π, ϕ, τ) = φ0 (25)

with φ0 ∈ su(2) and |φ0| = 1. (Recall that the target S2 has been introduced as the unit
sphere in su(2).) Motivated by the relation (21) between the Hopf invariant and the degree of
a diagonalizing gauge transformation for maps S3 → S2, we diagonalize φ̂,

φ̂ = �+σ3 � (26)

with � continuous on (S2 \ {ϑ = π}) × S1. For non-zero magnetic charge m, � cannot be
chosen to be continuous on all of S2 × S1. At the south pole, it has an Abelian discontinuity,

�(ϑ, ϕ, τ ) → e−iψ(ϕ,τ)σ3 �0 for ϑ → π (27)

related to the ambiguity of multiplying � by a diagonal matrix from the left in equation (26).
�0 is a constant matrix that diagonalizes φ0, i.e. φ0 = �+

0σ3�0.
Unfortunately, the analogue of the degree for maps from S2 × S1 to S2,

ν[�] ≡ 1

24π2

∫
S2×S1

ϑ �=π
tr(�+ d�)3 (28)

depends on the choice of the diagonalization matrix �. Under a change � → ω� with
ω = eiχ(ϑ,ϕ,τ )σ3 , ν is not invariant, because it is not additive for discontinuous �,

ν[ω�] = ν[�] + ν[ω] +
1

8π2
lim
ε→0

∫
ϑ=π−ε

tr d��+ ∧ ω+dω. (29)

The winding number of the diagonal function ω vanishes, but the surface term gives a
contribution (on the boundary ϑ = π − ε, the coordinate system (ϕ, τ ) is right-handed since
(ϑ, ϕ, τ ) is right-handed on S2 × S1)

1

8π2
lim
ε→0

∫
ϑ=π−ε

tr d��+ ∧ ω+ dω = 1

4π

∫
dψ(ϕ, τ) ∧ dχ(π, ϕ, τ )

= nτ=τ0 [ψ] nϑ=π
ϕ=ϕ0

[χ ] − nϕ=ϕ0 [ψ] nϑ=π
τ=τ0

[χ ] (30)

where we have introduced Abelian winding numbers, e.g.

nϕ=ϕ0 [ψ] ≡ 1

2π

∫ 2π

0
dτ

∂ψ(ϕ0, τ )

∂τ
. (31)

The other winding numbers are defined analogously. They do not depend on the values ϕ0,
respectively, τ0. The winding number of χ for fixed τ vanishes since χ is continuous for all
ϑ < π including the north pole. Hence,

ν[ω�] = ν[�] + nτ=τ0 [ψ]nϑ=π
ϕ=ϕ0

[χ ]. (32)

In the case at hand, the winding number of ψ for fixed τ is just the magnetic charge,
nτ=τ0 [ψ] = m (cf equation (9)). Since the discontinuous phase ψ(ϕ, τ) in equation (27)
changes by −χ(π, ϕ, τ ), it is therefore possible to define an invariant as

αϕ[φ̂] ≡ −ν[�] −mnϕ=ϕ0 [ψ]. (33)

We will refer to this invariant as the generalized Hopf invariant on S2 × S1. It constitutes
the desired topological invariant for maps S2 × S1 → S2 with magnetic charge m that fulfil
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equation (25). It turns out that (33) is the only invariant and the homotopy classes of such maps
form the group Z [27]. The restriction (25) has increased the number of homotopy classes
since it restricts the set of possible deformations. If deformations that violate equation (25)
are allowed, maps with α differing by multiples of 2m can be deformed into each other. A
mathematically more appealing definition of α is given in [27]. It coincides with the more
explicit definition given here. A definition that is very similar (and equivalent) to equation (33)
has also been introduced in [28].

Note that the generalized Hopf invariant depends on the choice of the coordinate ϕ, as
indicated by the subscript on α: consider, for instance, the coordinate system (ϑ, ϕ̃, τ ) with
ϕ̃ = ϕ + kτ and integer k that is an admissible parametrization of S2 × S1, too. Under this
change of coordinates, ν[�] is not altered, since the volume element occurring in the integral
(28) is invariant. The winding number (31), however, changes,

nϕ̃=ϕ0 [ψ] = 1

2π

∫ 2π

0
dτ

dψ(ϕ0 − kτ, τ )

dτ
= nϕ=ϕ0 [ψ] − knτ=τ0 [ψ] (34)

because the path {ϕ = ϕ0 − kτ, τ ∈ [0, 2π ]} along which the change of ψ is calculated, is
equivalent to the sum of the original path {ϕ = ϕ0, τ ∈ [0, 2π ]} and a path that winds k times
around the negative ϕ-direction for fixed τ . The generalized Hopf invariant therefore changes
by m2k,

αϕ̃[φ̂] = αϕ[φ̂] + m2k. (35)

Furthermore, αϕ[φ̂] depends on the point in the factor S2 of the domain (here the south
pole) that is used to formulate the constraint (25). One can show that a different choice changes
αϕ[φ̂] by 2m deg[φ̂|&] with & = γ × S1, where γ is a curve between the old and the new
point. To apply the above definition, one has to change the coordinate system such that the
new point corresponds to ϑ = π , of course.

Geometrically, the generalized Hopf invariant is, as for the original Hopf invariant, given
by the linking number of the preimages of two points on the target S2 if we represent S2 ×S1 as
a filled torus B2 × S1 in 3-space with the boundary of the disc B2 identified to one point—the
fixed point that is mapped to φ0 in equation (25) (cf figure 1). The ambiguity arising from
different coordinates ϕ is now replaced by the ambiguity of different embeddings in 3-space.
In order to obtain the same definition as equation (33), curves with constant ϕ on the surface of
the filled torus must not ‘wind around the torus’, i.e. be topologically trivial in the complement
of the torus. This fixes a possible ‘twist’ of the torus. Since, for a charge m configuration,
each point hasm preimages and a twist links every preimage with every other one, it is obvious
that it changes the generalized Hopf invariant by m2. The example below will show that
the generalized Hopf invariant measures the twist of the Higgs field. In view of the relation
between internal and real space present in a field with non-zero winding number m, it is not
surprising that αϕ[φ̂] is also sensitive to a twist in real space.

Example. As an example, consider the following auxiliary Higgs field with magnetic winding
number m:

φ(ϑ, ϕ, τ ) =

 sin ϑ cos(mϕ − kτ)

sin ϑ sin(mϕ − kτ)

cosϑ


 · σ. (36)
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Figure 1. Generalized Hopf invariant as a linking number of preimages in a filled torus in 3-space.
The picture shows an example with magnetic charge 1 (one preimage per point) and generalized
Hopf invariant 1 (the preimages are linked once).

Figure 2. Sketch of the Higgs field (36) for m = k = 1. The full circle indicates the point that is
mapped to φ0 as required by equation (25).

It can be represented as a standard charge m field on S2 that is ‘twisted’ around the 3-axis
along the worldline of the monopole,

φ(ϑ, ϕ, τ ) = ω+(τ ) φ(ϑ, ϕ, 0) ω(τ) (37)

ω(τ) = e−ikτσ3/2. (38)

The field φ is displayed for some values of τ in figure 2.
Given a diagonalization at τ = 0,

φ(ϑ, ϕ, 0) = �+
1(ϑ, ϕ) σ3 �1(ϑ, ϕ) (39)

the τ -dependent diagonalizing matrix can be represented as

�(ϑ, ϕ, τ ) = ω+(τ )�1(ϑ, ϕ) ω(τ). (40)

The factor ω+(τ ) is needed to make � periodic also for odd k. As argued above, the non-
Abelian winding number of � is the same as that of �1, because a shift of ϕ by a multiple of
τ does not change it. Since �1 depends on only two parameters, it vanishes, ν[�] = 0. For
ϑ → π , one finds

� → ei(kτ−mϕ)σ3 iσ2 (41)
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and therefore nϕ=ϕ0 [ψ] = k and

αϕ[φ̂] = mk. (42)

We conclude that the generalized Hopf invariant is given by the product of the magnetic charge
and the number of times the Higgs field is twisted along the monopole loop. Obviously, the
same is true for twists of arbitrary configurations φ(ϑ, ϕ, 0). It has been observed that this kind
of twist (called ‘Taubes winding’ in [29]) gives rise to a non-vanishing instanton number [24].
This has been shown explicitly for a finite-temperature instanton with non-trivial holonomy
[25]. The following sections investigate this relation in detail for general configurations.

For unit charge monopoles, uniform twists give all possible values of αϕ[φ̂]. For higher
charges, there are additional cases 0 < |α| < |m| that cannot be represented in the simple
form (37). They correspond to fields that are twisted only on a part of S2 that carries one unit
(or m′ < m units) of magnetic charge.

5. Hopf invariant of a monopole loop

We consider a single closed monopole loop M where the Higgs field vanishes (or is in the centre
for a group-valued field). Following the strategy developed in section 3, we will embed the
monopole loop into a topologically trivial 4-volume V . Using equation (22), the contribution
of the monopole loop to the instanton number is then given by the Hopf invariant of φ̂ on the
surface of V .

As in the previous section, we first embed the monopole loop M into a loop of finite
thickness r ,

VM ≡ {
x ∈ R

4
∣∣ |x − y| � r for some y ∈ M}

. (43)

r should be so small that VM does not become topologically non-trivial by self-intersections.
Since we intend to apply the definition of the generalized Hopf invariant given above, we
choose an isocurve C of φ̂ on the surface T of VM,

φ̂
∣∣
C = φ̂0 and C ⊂ T ≡ ∂VM. (44)

A note on the existence of such a curve: on every section A ∼= S2 through T and for every
ϑ0 ∈ (0, π) there exists a curve γ on which φ̂ = (ϑ0, ϕ) and

∫
γ

dϕ �= 0. Let A− denote that

connected component of A \ γ where the south pole is taken. On moving A along S1 through
T , A− changes continuously and cannot disappear because of the non-vanishing integral. The
union of all A− gives an open tube T −

ϑ0
⊂ T . On changing ϑ0, γ , and therefore also T −

ϑ0
, it

can be chosen to change continuously. On the intersection T −
π ≡ ⋂

ϑ0�π T
−
ϑ0

, we have φ̂ = s.
Since each section of T −

ϑ0
along a S2 in T is simply connected, this is also true for sections of

T −
π . Therefore, T −

π must contain a curve C of the required properties.
Now, we close the loop with a two-dimensional sheet D (reminiscent of a Dirac sheet)

that has C as its boundary,

∂D = C (45)

and intersects VM only there. For r → 0, the condition (44) can be represented in terms of
D: it requires that D emerges from M in a direction where φ̂ = φ̂0. We complement VM by
a sheet of finite thickness ε < r around D,

VD ≡ {
x ∈ R

4
∣∣ |x − y| � ε for some y ∈ D

} ∼= B2 × B2 (46)
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to define the topologically trivial volume V ,

V = VM ∪ VD. (47)

Eventually, we will perform the limit ε → 0. We decompose the surface of V into parts around
the loop and the sheet,

∂V = Tε ∪ TDε (48)

Tε ≡ T \ VD ∼= B2 × S1 (49)

TDε ≡ ∂VD \ VM ∼= S1 × B2. (50)

The various manifolds are sketched in figure 3 for the example of a loop in the z–t-plane,
x = y = 0, z2 + t2 = R2, using double polar coordinates in spacetime,

x + iy = ueiϕ and z + it = veiτ . (51)

The tube T can be parametrized by the coordinates ϑ = arctan(u/(v−R)), ϕ and τ that have
the same orientation as in section 4. A double set of polar coordinates (u, ϕ, v, τ ) with u = 0
on D and v = v0 = constant on C can be chosen for any M and D and will be used in the
following.

Figure 3. Manifolds used to define V : (a) three-dimensional view for fixed ϕ; (b) two-dimensional
view for fixed ϕ and τ ; (c) three-dimensional view for fixed τ .
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The intersection

t ≡ Tε ∩ TDε = ∂Tε = ∂TDε
∼= S1 × S1 (52)

is parametrized by the coordinates ϕ and τ .
Since there is no local representation of the Hopf invariant, we cannot calculate separate

contributions from Tε and TDε to α[φ̂|∂V ]. Therefore, we diagonalize φ̂ on ∂V ∼= S3,

φ̂ = �+σ3� on ∂V (53)

and calculate the contributions to ν[�], which is by equation (24) equal to the negative of the
desired Hopf invariant.

In the limit ε → 0, the intersection t reduces to the curve C. Condition (44) implies that,
in this limit, � is constant up to a diagonal factor,

� → e−iψ(ϕ,τ)σ3�0 on t for ε → 0. (54)

As in section 4, the winding number ofψ for fixed τ gives the magnetic charge of the monopole
singularity,

nτ=τ0 [ψ] = m. (55)

The interpretation of the winding number for fixedϕ can be found by noting thatTDε approaches
the sheet D in the limit ε → 0, and therefore

� → eiχ(ϕ,v,τ )σ3�̃(v, τ ) on TDε for ε → 0 (56)

where �̃ is independent of ϕ and diagonalizes φ̂ on D,

φ̂ = �̃+σ3�̃ on D. (57)

On the boundary ∂D = C, also �̃ is constant up to a diagonal factor,

�̃ = e−iψ̃(τ )σ3�0 on C. (58)

In the same way that the winding number of ψ is related to the magnetic charge, the winding
number of ψ̃ is related to the degree of φ̂ on D (cf equations (4) and (9)),

n[ψ̃] = deg
[
φ̂
∣∣
D

]
. (59)

This degree is well defined since the boundary C of D is mapped to a single point. D is
therefore effectively compactified to S2. It can be interpreted as the flux through D produced
by the gauge-fixing transformation. However, since the flux stems from a finite magnetic field,
unlike the flux of the monopole singularity, it cannot be distinguished from the flux already
present before gauge fixing.

Furthermore, since the two expressions (54) and (56) for � on t = ∂TDε for ε → 0 have
to coincide, the relation ψ(ϕ, τ) = ψ̃(τ ) − χ(ϕ, v0, τ ) follows (v = v0 on C). χ is also
continuous for v → 0. Therefore, its winding number with respect to τ vanishes and the
corresponding winding numbers of ψ and ψ̃ are identical, whence

nϕ=ϕ0 [ψ] = deg
[
φ̂
∣∣
D

]
. (60)

The winding number with respect to ϕ is the negative of that of ψ ,

nτ=τ0 [χ ] = −m. (61)
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We can now express the contributions to ν[�|∂V ] in the limit ε → 0 in terms of φ̂. For
Tε, we insert the winding number of ψ into the definition of the generalized Hopf invariant,
equation (33), to obtain

αD
[
φ̂
∣∣
T

] = − lim
ε→0

ν
[
�

∣∣
Tε

] −m deg
[
φ̂
∣∣
D

]
. (62)

We have replaced the subscript ϕ on α by D, because D determines the coordinate ϕ up to
homotopy: ϕ is that angle on the torus t that can be continuously extended to the whole tube
TDε around D. Obviously, this is not the case for τ ruling out an admixture of τ to ϕ.

For the second contribution, we note that, since TDε
∼= S1 × B2 has the same topology

as Tε, we can apply the relation (32) for the non-Abelian winding number of a product to
equation (56). The angles τ and ϕ have exchanged their roles:

lim
ε→0

ν
[
�

∣∣
TDε

] = ν[�̃] + nϕ=ϕ0 [ψ̃]nv=v0
τ=τ0

[χ ] = − deg
[
φ̂
∣∣
D

]
m (63)

where we have used the fact that ν[�̃] vanishes since �̃ depends on only two parameters and
have inserted the winding numbers (59) and (61). Putting equations (62) and (63) together,
we obtain

lim
ε→0

ν
[
�

∣∣
∂V

] = lim
ε→0

(
ν
[
�

∣∣
Tε

]
+ ν

[
�

∣∣
TDε

]) = −αD
[
φ̂
∣∣
T

] − 2m deg
[
φ̂
∣∣
D

]
. (64)

The Hopf invariant of φ̂ on ∂V is therefore given by

α
[
φ̂
∣∣
∂V

] = αD
[
φ̂
∣∣
T

]
+ 2m deg

[
φ̂
∣∣
D

]
. (65)

This is the desired expression for the contribution of a monopole loop to the instanton number
(cf equation (22)). While αD[φ̂|T ] depends on the position of the sheet D, it is independent
of the values of φ̂ on D, as indicated. The latter enter through the term deg[φ̂|D], though.
The instanton number is therefore not given by properties of the auxiliary Higgs field near the
monopole singularity only. The instanton number modulo 2m, however, is

α
[
φ̂
∣∣
∂V

] = αD
[
φ̂
∣∣
T

]
(mod 2m). (66)

One can show that the dependence on the position of D also disappears here, since a different
choice of D changes αD[φ̂|T ] only by multiples of 2m: we have already seen in section 4 that
a change of the curve C used for the condition (44) generates such a shift. There, however,
a change of the coordinate ϕ produced a shift by m2. Here, only a shift by 2m2 is possible.
The reason is that the embedding of S2 × S1 into R

4 given by T fixes the coordinate ϕ up to
multiples of 2τ (up to homotopy). Figure 4, for instance, shows an alternative choice of the
sheet D for the loop of figure 3. Consider first a sheet that stays at the position indicated in the
first picture for all τ . A curve of constant ϕ corresponds to a τ -independent point on the circle
where the tube meets the sphere. Now consider a sheet that winds once around the sphere,
while τ changes by 2π as indicated in the other pictures. Since ϕ has to be continuous on
TDε, a curve of constant ϕ has to be homotopically equivalent to a τ -independent point in the
v = 0-plane. This is indicated by the thick lines on the tubes for a point on the positive x-axis.
On the intersection of tube and sphere, the curve of constant ϕ now winds twice around the
circle as τ changes by 2π . This sheet therefore corresponds to a new coordinate ϕ̃ = ϕ + 2τ .
Obviously a shift by only τ is not possible.

Consequently, we can assign a unique Z2|m|-valued generalized Hopf invariant to φ̂|Ti ,

α
[
φ̂
∣∣
T

] ≡ αD
[
φ̂
∣∣
T

]
mod 2m ∈ Z2|m| (67)
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Figure 4. Alternative choice of the sheet D. For details see text.

and write

α
[
φ̂
∣∣
∂V

]
mod 2m = α

[
φ̂
∣∣
T

]
. (68)

Since the group of homotopy classes of maps from S2 × S1 to S2 with magnetic winding
number m is Z2|m| (cf section 4), this is the maximal information that can be expected.

One could argue that it is possible to get rid of the additional term in equation (65) by
choosing a sheet D on which φ̂ is constant, φ̂|D = φ̂0. However, this is not possible in
general. If the Hopf invariant α[φ̂|∂V ] is non-zero, φ̂ takes all possible values on ∂V . This
implies that the preimages of all points extend to the exterior of V (and some even to infinity
if the total instanton number is non-zero). One therefore has to expect that an isosurface D
whose boundary is a monopole loop also leaves V . Such a D cannot be used to identify the
contribution of an individual monopole loop to the instanton number in the way described here.

The result (65) can also be understood geometrically: the decomposition ∂V = Tε ∪ TDε
corresponds topologically to the decomposition ofS3 into two filled tori, S3 = B2×S1∪S1×B2

(cf figure 5). The Hopf invariant of φ̂ on ∂V is given by the linking number of the preimages
of two points. Each point has m = deg[φ̂|T ] preimages in the filled torus corresponding to Tε
and deg[φ̂|D] preimages in the one corresponding to TDε if the orientation of the preimages is
taken into account. If we furthermore choose the decomposition into the two tori compatible
with the coordinate ϕ around C in the same way as the embedding of the torus into R

3 in
section 4, the linking number of the preimages in Tε is given by αD[φ̂|T ]. The preimages in
TDε do not link since φ̂ becomes ϕ independent in the limit ε → 0. Finally, we have to take
into account the linking between the preimages in Tε and TDε. This gives the remaining term
2m deg[φ̂|D] in equation (65).

Monopole loop for the instanton solution. The authors of [13] have found solutions to the
differential maximal Abelian gauge condition for the single-instanton solution [30, 31] that
correspond to closed monopole loops of various radii. Although the global minimum of the
gauge-fixing functional (3) is only reached in the limit of zero radius, it is conjectured that a
small perturbation from, for example, a nearby instanton can stabilize a finite radius. To check
our result†, we calculate the contributions to equation (65) for the explicit solution that has
been given in [13] for the limit in which the radius of the monopole loop is much smaller than
the radius of the instanton. In the double polar coordinates of equation (51) in spacetime and

† In the case of the maximal Abelian gauge, it is also valid for the spacetime R
4, because the finiteness of the

gauge-fixing equation (3) guarantees the validity of equation (14).
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Figure 5. Decomposition S3 = B2 × S1 ∪ S1 × B2 and representation of α[φ̂|∂V ] as a linking
number of preimages. S3 is represented as a 3-ball with its surface identified at a point.

Figure 6. Variables ϑ+ and ϑ−.

in spherical polar coordinates in target space, the solution for a regular gauge instanton reads

φ =

 sin β cos(ϕ + τ)

sin β sin(ϕ + τ)
cosβ


 · σ (69)

where β is a function of u and v only,

β(u, v) = ϑ+ + ϑ− where tan ϑ± = u

v ± R
. (70)

The angles ϑ± can be chosen as continuous modulo 2π everywhere with the exception of the
circle u = 0, v = R, where the monopole singularity arises (cf figure 6 copied from [13]). A
contour plot of β(u, v) is shown in figure 7. Since β tends to 0 or π for u → 0 or v → 0,
there are no additional singularities due to the angles ϕ and τ . For u2 + v2 → ∞, φ tends to
the standard Hopf map [32] with τ substituted by −τ and therefore carries a Hopf invariant of
−1. A gauge transformation that diagonalizes φ removes the instanton winding number from
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Figure 7. Contour plot of the polar angle parameter β(u, v). Two alternative choices (D and D′)
of the Dirac sheet are included.

the gauge potential at infinity and produces a gauge singularity along the monopole loop (and
on a sheet D) that carries the same winding number.

In order to calculate the contributions to equation (65), we note that near the monopole
ϑ+ → 0 and ϑ− complements ϕ to a set of spherical polar coordinates on the sphere around
the monopole. Finally, τ measures the position along the monopole loop. A natural choice for
the sheet D is u = 0, v � R as in figure 3 where ϑ− = π and φ = −σ3. The condition (44) is
therefore fulfilled for every tube around the monopole loop. Furthermore, the coordinate ϕ is
compatible with the sheet D since it can be defined globally on a tube u = ε, v � R around
the sheet D. Since β ∼ ϑ− near the monopole loop, φ is identical to the field (36) from the
example in section 4 for m = k = 1 and the first term in equation (65) is therefore

αD
[
φ
∣∣
T

] = −1. (71)

On the sheet D, φ is constant. The corresponding degree therefore vanishes,

deg
[
φ̂
∣∣
D

] = 0 (72)

and the second term in (65) does not contribute. We obtain the expected result ν = 1. Note
that this is a non-generic case where the argument of the paragraph after equation (68) is
circumvented in a special way: while indeed the preimages of all points extend to infinity, that
of β = π splits at the origin into the plane v = 0 and the sheet D due to a vanishing Jacobi
matrix of φ.

To see how the contributions to the instanton number depend on the sheet D chosen,
we repeat the calculation for an alternative sheet D′ indicated schematically in figure 7. The
indicated relation between u and v is complemented by the condition ϕ = ϕ0. The angle ψ
is not constrained. By using the right-handed set of coordinates (ϑ ′ = π − ϑ−, ϕ′ = −ϕ, τ)
and the formulae in section 4, one finds that in this case

αD′
[
φ
∣∣
T

] = +1. (73)
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The Higgs field on the sheet D′ is no longer constant but takes all values on S2 as can be seen
in figure 7,

φ
∣∣
D′ =


 sin(π − ρ) cos(ϕ0 + τ)

sin(π − ρ) sin(ϕ0 + τ)
cos(π − ρ)


 (74)

where ρ is a suitable radial coordinate with the range [0, π ] on D′. Due to the occurrence of
π − ρ, this map has the degree

deg
[
φ
∣∣
D′

] = −1. (75)

The magnetic charge is still +1 because we have not changed the orientation of τ . The Hopf
invariant on the surface ∂V ′ around T and D′ is therefore again α[φ|∂V ′ ] = 1 − 2 = −1. The
contributions from the generalized Hopf invariant and the Higgs field on the sheetD, however,
have changed.

By ‘twisting’ the sheet D′, i.e. replacing the condition ϕ = ϕ0 by ϕ = ϕ0 + nτ , one can
obtain any odd value α′

D[φ|T ] = 2n + 1 and the appropriate value deg[φ|D] = −n − 1 that
yield a total α[φ|∂V ] = −1.

6. Topologically non-trivial monopole loops

The procedure of closing the individual loops by sheets cannot be applied to loops that are
topologically non-trivial in spacetime. The simplest geometry where this can occur is S3 ×S1.
Topologically non-trivial loops wind around the second factor. For simplicity, we assume
all fields to be periodic in the second factor. This can always be accomplished by a gauge
transformation. We map S3 by a stereographic projection to R

3 such that there is no monopole
at the point that is mapped to infinity. In this case, the fields tend to a pure gauge at infinity,

A(x) ∼ U+(x̂, t) dU(x̂, t)

φ(x) → U+(x̂, t) φ0 U(x̂, t) ≡ φ∞(x̂, t)
for |x| → ∞ (76)

and the instanton number is given by the winding number of the map U : S2 × S1 → SU(2)
which can be expressed as an integral over the same density as for maps S3 → SU(2),

ν = ν[U ] ≡ 1

24π2

∫
S2×S1

tr
[
(U+ dU)3

]
. (77)

Since the total magnetic charge on the compact manifold S3 necessarily vanishes, φ̂∞: S2 ×
S1 → S2 has magnetic winding number zero. As already mentioned in section 4, the set of
homotopy classes of such maps is Z and is parametrized by a Hopf invariant defined in an
analogous way as for maps S3 → S2. Consequently, the relation between the winding number
of U and the Hopf invariant of φ̂∞ also remains the same,

ν[U ] = −α[φ̂∞]. (78)

However, the procedure advocated in section 3 is not directly applicable here because it
is not possible to embed topologically non-trivial monopole loops into topologically trivial
volumes. If we embed a single topologically non-trivial loop into a topologically non-trivial
volume V , the auxiliary Higgs field has a non-zero magnetic winding number on ∂V . It is
therefore not possible to assign a unique Hopf invariant to it. The best we can do in order to
decompose the Hopf invariant, is to group the monopole loops into neutral sets and embed
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each set into a volume that is topologically as simple as possible, i.e. equivalent to B3 × S1.
If this is done, the Hopf invariant of φ̂∞ again splits into contributions from the boundaries of
the volumes Vi ,

−ν = α[φ̂∞] =
∑
i

α
[
φ̂
∣∣
∂Vi

]
(79)

where topologically trivial loops are treated as before.
To complete the calculation of the instanton number, we only have to consider a single set

of N topologically non-trivial monopole loops Mi with magnetic charges mi and total charge
zero,

N∑
i=1

mi = 0. (80)

In order to construct the volume V ∼= B3 × S1 around these, we first embed the individual
loops Mi into thick loops VMi

with boundaries Ti
∼= S2 × S1. Then we connect the ‘tubes’ Ti

by N − 1 sheets Dβ that do not intersect with each other and intersect with the tubes on curves
Cβi where φ̂ is constant (cf figure 8),

Dβ ∩Dγ = ∅ for β �= γ

Dβ ∩ Ti = Cβi ⊂ ∂Dβ
(81)

φ̂
∣∣
Cβi

= φ
β

i = constant. (82)

We assume that two of the tubes (T1 and TN ) intersect only with one and the others with two
sheets. This means that monopoles and sheets form an open chain. The tubes and sheets will
be numbered consecutively.

Figure 8. Three-dimensional section of spacetime for fixed τ with tubes around monopoles and
sheets.

As for the case of topologically trivial monopole loops, we introduce thick sheets
VDβ

∼= B2 × I × S1 and decompose the surface around the union V of all thick loops and
sheets,

V ≡ ⋃
i

VMi
∪ ⋃

β

VDβ (83)

into parts around loops and sheets,

∂V = ⋃
i

Tiε ∪ ⋃
β

T β
ε (84)

Tiε ≡ Ti \ ⋃
βVDβ (85)

T β
ε ≡ ∂VDβ \ ⋃

iVMi
. (86)
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The topology of these manifolds is as follows:

∂V ∼= S2 × S1 (87)

Tiε
∼=

{
B2 × S1 for i = 1, N

S1 × I × S1 for i = 2, . . . , N − 1
(88)

T β
ε

∼= S1 × I × S1. (89)

The intersections still have the topology of tori,

t
β

i ≡ Tiε ∩ T β
ε

∼= S1 × S1. (90)

We assume ε to be so small that the thick sheets VDβ do not intersect. tβi will be parametrized
by two angles ϕ and τ , where τ runs along the monopole loops and can be defined globally on
∂V , while ϕ measures the angle around the sheets. It can be defined globally on ∂V with the
exception of one point on both T1ε and TNε. We complement ϕ and τ with a third coordinate s
such that s and ϕ are spherical polar coordinates on the factor S2 of ∂V and s = s

β

i is constant
along the curves Cβi . Thus, s takes the role of ϑ on Tε and v on TDε in the previous section.

On ∂V ∼= S2×S1, we can diagonalize φ̂ continuously, since the magnetic winding number
of φ̂ on ∂V vanishes,

φ̂ = �+σ3� on ∂V . (91)

In the limit ε → 0, the intersections tβi reduce to the curves Cβi where � has to be constant up
to a diagonal factor,

� → e−iψβ

i (ϕ,τ )σ3 �0 on tβi for ε → 0. (92)

The winding numbers of ψβ

i are again related to the magnetic winding numbers of φ̂: on
the one hand,

nτ=τ0 [ψi
i ] − nτ=τ0 [ψi−1

i ] = deg
[
φ̂
∣∣
Ti

] = mi (93)

where we have set ψ0
1 = ψN

N = 0. On the other hand, T β
ε approaches Dβ as ε → 0, whence

� → eiχ(ϕ,s,τ )σ3�̃(s, τ ) on T β
ε for ε → 0 (94)

where �̃ diagonalizes φ̂ on Dβ ,

φ̂ = �̃+σ3�̃ on Dβ (95)

and is constant up to a diagonal factor on the boundary ∂D = C,

�̃ = e−iψ̃β

i (τ )σ3�0 on Cβi . (96)

Since φ̂ maps the boundaries Cββ and Cββ+1 of Dβ to the fixed points φββ and φββ+1, φ̂|βD can be

interpreted as a function from S2 to S2 and the degree deg[φ̂|Dβ ] is well defined. It is also
related to the winding numbers of the ψ̃β

i ,

n[ψ̃β

β ] − n[ψ̃β

β+1] = deg
[
φ̂
∣∣
Dβ

]
. (97)

Equations (92) and (94) imply ψ
β

i (ϕ, τ ) = ψ̃(τ ) − χ
β

i (ϕ, τ ) with χ
β

i (ϕ, τ ) ≡ χ(ϕ, s
β

i , τ ).
Since χ interpolates between Cββ and Cββ+1, its winding numbers on both curves have to be



Instantons and monopoles in general Abelian gauges 3015

equal. The winding numbers of ψ with respect to ϕ are therefore identical at both ends of the
sheet,

nτ=τ0 [ψβ

β ] = nτ=τ0 [ψβ

β+1] ≡ mβ. (98)

They can be interpreted as the Abelian magnetic flux carried along the string from monopole
to monopole as opposed to the flux deg[φ̂|Dβ ] that flows perpendicularly through the sheet.

Furthermore,

nϕ=ϕ0 [ψβ

β+1] − nϕ=ϕ0 [ψβ

β ] = deg
[
φ̂
∣∣
Dβ

]
. (99)

In the limit ε → 0, we can now relate the non-Abelian winding numbers of � on Tiε
and T β

ε to the Abelian winding numbers and generalized Hopf invariants. For Tiε, we have
to express the generalized Hopf invariant in terms of a diagonalizing function � that is now
discontinuous along two curves. Considerations very similar to those in section 4 can be used
to verify that the correct generalization of equation (33) is

αϕ
[
φ̂
∣∣
Ti

] = −ν[�∣∣
Ti

] − nτ=τ0 [ψi
i ] nϕ=ϕ0 [ψi

i ] + nτ=τ0 [ψi−1
i ] nϕ=ϕ0 [ψi−1

i ]. (100)

This expression coincides with the definition (33) applied to a diagonalization of φ̂|Ti that is
discontinuous along either Cii or Ci−1

i .
For T β

ε , we apply the relation (32) to equation (56). In addition to the exchange of ϕ and
τ , we have to take the contributions from two boundaries into account,

lim
ε→0

ν
[
�

∣∣
T
β
ε

] = n[ψ̃β

β ]nτ=τ0 [χβ

β ] − n[ψ̃β

β+1]nτ=τ0 [χβ

β+1]. (101)

The total winding number of � can now be expressed as

lim
ε→0

ν
[
�

∣∣
∂V

] = lim
ε→0

(∑
i

ν
[
�

∣∣
Tiε

]
+

∑
β

ν
[
�

∣∣
T
β
ε

])

= −
∑
i

αϕ
[
φ̂
∣∣
Ti

] − 2
∑
β

(
nτ=τ0 [ψβ

β ] nϕ=ϕ0 [ψβ

β ] − nτ=τ0 [ψβ

β+1] nϕ=ϕ0 [ψβ

β+1]
)
.

(102)

By equation (78), −ν[�|∂V ] is equal to the Hopf invariant of φ̂|∂V . Inserting the expressions
(98) for nτ=τ0 [ψβ

i ] and (99) for nϕ=ϕ0 [ψβ

i ], we therefore obtain the final result for the
contribution to equation (79),

α
[
φ̂
∣∣
∂V

] =
∑
i

αϕ
[
φ̂
∣∣
Ti

] − 2
∑
β

mβ deg
[
φ̂
∣∣
Dβ

]
. (103)

mβ can be calculated from mi by use of the relation (93) which can be expressed as

mi = mi −mi−1 (104)

with m0 = mN = 0:

mβ =
β∑
i=1

mi. (105)

Therefore, equation (103) contains information about φ̂ only and is independent of the choice of
�. Note, that although the generalized Hopf invariants of φ̂ on the tubes around the individual
monopole loops depend on the choice of the coordinate ϕ, their sum is determined by the
sheets Dβ that relate ϕ on the various tubes (cf figure 8). As in the case of topologically trivial
monopole loops, the instanton number modulo 2m, where m is the largest common divisor of
mi , is determined by the auxiliary Higgs field on the tubes Ti around the monopoles only, and
is independent of the sheets Dβ chosen.
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7. Polyakov gauge

We consider the Polyakov gauge (or the related modified axial gauge) on the spacetime S3 ×S1

with periodic boundary conditions in time. In this set-up, a stronger relation between the
instanton number and monopoles holds [20–22],

ν = −
∑
i

φ(xi )=−1

mi (106)

where the sum is taken over all monopole singularities where the Polyakov line is −1. In
contrast to the general case, the position of the Dirac strings does not enter and every monopole
contributes only ±mi (or 0) to the instanton number. Two monopoles with charges ±1 and
Polyakov line ±1, for instance, give ν = ±1 depending on the combination of signs. Our
above result, on the other hand, suggests that each of the two monopoles can have an arbitrary
‘twist’, and therefore every integral value of the instanton number should be possible. The
Polyakov line must determine the relative twist of the monopoles in some way. In this section,
we try to shed some light on this connection.

A special property of the Polyakov gauge is that the Polyakov line (cf equation (2)) at a
single time, e.g. t = 0, already contains some information on its time dependence: first, the
eigenvalues of the Polyakov line are time independent, since its time evolution is given by

φ(x, t) = U+(x, t) φ(x, 0) U(x, t) (107)

where U(x, t) ∈ SU(2) is the parallel transporter from (x, 0) to (x, t) along a straight line.
This relation implies that the monopoles are static. Second, the temporal boundary conditions
of U are given in terms of φ(x, 0),

U(x, 0) = 1

U(x, π) = φ(x, 0)
(108)

where we have chosen the temporal extension of spacetime to be π . The boundary conditions
on U , of course, restrict the possible time dependence of φ. It turns out that this restriction
determines the instanton number.

As before, the charts on S3 (or the stereographic projection) are chosen such that there is
no monopole at spatial infinity,

φ(x, 0) → φ∞(x̂) �= ±1 for |x| → ∞. (109)

Since the transition function at |x| → ∞ and t = 0 maps S2 to SU(2) and is therefore
homotopically trivial, φ∞(x̂) can always be made constant by a gauge transformation. This
will be assumed in the following. Inside the chart, U : R

3 × I → SU(2) is a continuous
function. On the boundary of its domain R

3 × I , U has the following values:

U(x, t) =




1 for t = 0

φ(x, 0) for t = π

U∞(x̂, t) for |x| → ∞.

(110)

Continuity of U implies

U∞(x̂, 0) = 1

U∞(x̂, π) = φ∞.
(111)
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U∞ can therefore be interpreted as a function from S3 to SU(2), and since U is continuous,
its winding number must be the opposite of the winding number of φ(x, 0),

n[U∞] = −n[φ(·, 0)]. (112)

Since U∞ is not periodic, it cannot be used to formulate a boundary condition for the gauge
field by itself. We therefore introduce

Ũ∞(x̂, t) ≡ e−iα∞·σt/πU∞(x̂, t) with eiα∞·σ = φ∞. (113)

This function is periodic, and since e−iα∞·σφ∞eiα∞·σ = φ∞, we still have

φ(x, t) → Ũ+
∞(x̂, t) φ∞ Ũ∞(x̂, t) for |x| → ∞. (114)

Therefore, the instanton number is given by the winding number of Ũ+
∞,

ν = −n[Ũ∞] = −n[U∞] = n[φ(·, 0)]. (115)

We conclude that the Polyakov line at a single time contains enough information about its
time dependence to determine the instanton number. The above considerations also apply to
a volume enclosing a neutral set of monopoles. The Polyakov line at a single time therefore
really determines the ‘relative twist’ (the contribution (103) to ν) of such a set.

If we drop the requirement (108), the most general boundary condition for U compatible
with periodicity of φ is

U(x, π) = eiβ(x)α̂(x)·σ where φ(x, 0) = eiα(x)·σ. (116)

For U to be continuous, we must have

β(x) = kπ with k ∈ Z if φ(x, 0) = ±1. (117)

The relation between U(x, π) and the instanton number is, of course, still valid.
For the choice β(x) = kα(x), i.e. U(x, π) = (

φ(x, 0)
)k

, for instance, the winding
number of U(·, π) and therefore the instanton number is multiplied by k,

ν = n[U(·, π)] = kn[φ(·, 0)]. (118)

With other choices of β, all values of ν can be generated as long as monopoles are present.
In general Abelian gauges, the Higgs field at a single time does not therefore determine the
instanton number, even if its eigenvalues are time independent.

8. Discussion

In this work, the instanton number has been expressed in terms of the auxiliary Higgs field
defining a general Abelian gauge. On the spacetime S4, the instanton number can be written
as a sum over contributions associated with individual monopole loops,

ν = −
∑
i

α
[
φ̂
∣∣
∂Vi

]
(119)

where Vi is a topologically trivial volume containing the monopole loop in question. The
contribution of a monopole of magnetic charge m to the instanton number modulo 2m is given
in terms of the Higgs field near the monopole singularity, only,

α
[
φ̂
∣∣
∂V

]
mod 2m = α

[
φ̂
∣∣
T

] ∈ Z2|m| (120)



3018 O Jahn

where T is a small tube around the monopole loop and α[φ̂|T ] measures the ‘twist’ (‘Taubes
winding’) of the Higgs field on that tube. For uniform twist, it is given by the product of the
magnetic charge and the number of times the configuration is twisted as one passes along the
loop. For the generic case of unit charge monopoles, α[φ̂|T ] determines the instanton number
modulo 2, i.e. whether it is odd or even.

The full instanton number can also be expressed in terms of the Higgs field, however, not
exclusively in terms of the values near monopole singularities,

α
[
φ̂
∣∣
∂V

] = αD
[
φ̂
∣∣
T

]
+ 2m deg

[
φ̂
∣∣
D

]
(121)

where D denotes a (Dirac) sheet closing the monopole loop. The generalized Hopf invariant
αD[φ̂|T ] depends on the position of the sheet but on values of φ̂ only on T ; it has the same
interpretation asα[φ̂|T ]. The values of φ̂ away from the monopole loop enter through the degree
deg[φ̂|D] of φ̂ on the sheet D. The total contribution to the instanton number, equation (121),
is independent of the choice of D.

For unit charge monopoles, the Z2 contribution (120) can be related to the centre
symmetry: an odd twist (i.e. one contributing to ν mod 2) can be generated by applying a
gauge transformation that changes by a factor of −1 as one passes once along the monopole
loop. Such a discontinuity does not affect the gauge potential that transforms according to
the adjoint representation of the gauge group. For non-trivial loops on S3 × S1, this can be
interpreted as a centre symmetry transformation that is applied to only one of the monopoles
but not to the others. This is only possible if a singularity is produced between the monopoles,
or if the field between the monopoles is altered in a way that does not correspond to a gauge
transformation. Of course, such a change is necessary to alter the instanton number. For a
topologically trivial monopole loop, the gauge transformation has to be discontinuous along
a two-dimensional surface that links with the monopole loop. It produces a ‘centre-vortex’
singularity on the sheet. If the singularity is avoided by altering the fields, a ‘thick centre
vortex’ is generated (or removed). In a recent work [33] it has been shown that in a continuum
version of the maximal centre gauge the instanton number can be related to self-intersections of
centre-vortices. The total number of self-intersections is only non-zero if a (connected) vortex
contains regions with different orientations. Since the orientation of a vortex (as defined in [33])
can only change at the worldline of a magnetic monopole, it should be possible to express the
number of self-intersections as the linking number of vortices with monopoles. Our findings
indicate that a similar relation may be valid in other centre gauges, like, for example, the
Laplacian centre gauge proposed in [34].
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